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ABSTRACT

SN : Tests were conducted on a single-stage compressor rig to determine

the feasibility of increasing stator blade loading beyond current levels by
bleeding or blowing the suction surface boundary layer. The compressor rig
employed stator hub and tip end wall boundary layer bleeds. Six highly loaded
stator configurations were tested. One of the configurations employed no B
suction surface boundary layer bleeding or blowing features and was used to
establish a performance base line, Two stator configurations provided for
suction surface boundary layer bleed and the other three stator configura-
tions employed features to reenergize the suction surface boundary layer by
blowing,

A significant improvement in stator performance was achieved with
suction surface boundary layer bleed compared to the base line configuration.
Performance with suction surface boundary layer blowing was generally in-
ferior to that of the base line configuration.
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SINGLE~-STAGE EXPERIMENTAL EVALUATION
OF BOUNDARY LAYER BLOWING AND BLEED
TECHNIQUES FOR HIGH LIFT STATOR BLADES

V. FINAL REPORT*

By
R. J. Loughery, R. A. Horn, Jr., and P. C. Tramm

Detroit Diesel Allison Division, GM

SUMMARY

The objective of this program was to determine experimentally the feas-
ibility of increasing stator blade loading beyond current levels by bleeding
or blowing the suction surface boundary layer.

Tests were conducted on a single-stage compressor rig. Six stator
configurations were tested. The stator design conditions were selected to
be typical of those found in middle and latter stages of a highly loaded multi-
stage compressor. Stator hub and tip wall bleed was employed in these
comparative tests to remove the possibility of end wall boundary layer sepa-
ration. Flow in*o the stator was generated by a row of inlet guide vanes and
a state-of-the-art flow generating rotor.

The six stator configurations differed with resnect to design loading
level and the suction surface boundary layer control features used in the
designs. A summary of the six staior configurations follows:

Stator blade type No. of Slot location
Stator hub (D¢) (bleed-blowing) slots (% chord along suction surface)
0.65 Bleed 1 60
0.65 Blowing 1 42
0.175 Bleed 3 25, 41, 61
0.75 Blowing 1 39.25 -
0.175 Blowing 2 40, 69.5
0.75 Unslotted - -

*This report supersedes NASA CR54565, CR54571, CR54570, CR54572, CR54566,

and CR54567, Measurement errors bave been found in data presented in these
reports,
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The unslotted stator configuration was used to establish a performance
base line for the 0.75 Dy sloted bleed and blowing configurations,

Each stator configaration was tested in the single-stage rig to determine
stator blade element performance and stage overall performance. The in-
tent was to determine stator blade element performance at 10, 30, 50, 70,
and 90% span locations. Because of measurement errors, much of the data
was deleted and comparison of the configurations was made at the 50% span
location only. Blade element performance at the midspan location is pre-
sented as loss coefficiernt, deviation angle, and diffusion factor versus in-~
cidence angle, and loss parameter versus diffusion factor.

A summary of results based on a midspan blade element performance
comparison follows.

1. A significant improvement in blade element performance was achieved
with suction surface boundary layer bleed compared with the unslotted’
stator configurations.

2, Blade element performance with suction surface boundary layer blow-
ing was generally inferior to that of the unslotted stator configuration.

3. The data suggest that design of the slotted blowing stator configurations
may not have been optimum. Possible improvements could be obtained
by a modified choice of suction surface slot location and by modifica-
tions to the blade leading edge.

Stator end wall bleed improved stage overall efficiency by about 2%.
This gain was a result of bleeding the hub end wall; the tip end wall did not
respond to bleed.

INTRODUCTION

For future gas turbine power plants, higher compressor stage pressure
ratios are desired and adequate stage flow range must be achieved at these
increased work levels. Increased stage pressure ratio can lead to incre.sed
turning and diffusion for the rotor and stator blades. The result is an in-
crease in diffusion locally near blade suction surf..ces which, when increased
sufficiently, causes the useful operation of the airfoils to be terminated by
severe suction surface boundary layer separation. There is considerable
analytical and empirical evidence that boundary layer separation can be de-
layed by energizing or removing the low energy fluid near the airfoil surface.
In view of these considerations, an experimental program was undertaken in-
volving a single-stage compressor rig. The objective of the program was to
determine experimentally the feasibility of increasing stator blade loading

beyond current levels by bleeding or blowing the suction surface boundary
l\ayer.
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Six stator configurations—one unslotted, three slotted blowing, and two
slotted bleed=-- were tested in combination with an inlet guide vane and flow
generating rotor. Design information for the two slotted bleed stator con-
figurations and the three slotted blowing stator configurations is contained in
References 1 and 2, respectively. The compressor rig incorporated special
features to remove low energy fluid from the boundary layer adjacent to the
stator hub and tip, These features were incorporated to preclude a possi-
bility of stator hub and tip boundary layer separation. Performance of the in-
let guide vane and flow generating rotor is reported in Reference 3. Per-
formance of the gix stator configurations is reported in References 3, 4, 5,
6, 7, and 8. A review of the stator test data and data reduction procedures
has shown that the results reported in References 3, 4, 5, 6, 7, and 8 are
in error. The sources of error are reported in the Apparatus and Proce-~
dures section of this report, A reevaluation of the data has shown that a
valid and reasonably complete comparison of performance for the six stator
configurations could be made at the 50% streamline station only,

‘This report presents a summary and comparison of the performance
of the six stator configurations at the 50% streamline station, Data presented
in this report supersedes all blade element and overall performance data in
References 3, 4, 5, 6, 7, and 8,

SYMBOLS
Ae Elemental area, ft2

Tw
Cs Skin friction coefficient, T
c Blade chord, in.

Df Diffusion factor

Hy Boundary layer shape parameter,
incompressible displacement thickness)

incompressible momentum thickness

i Incidence angle, degrees (See Figure 3.)
M Mach number
m Bleed rate per blade, lb,,/sec

2

Rotational speed, rpm




, n Number of blades
P Total or stagnation pressure, psia
p Static or stream pressure, psia

Dynamic pressure, psia (1/2 pvz)

, R R adius, in. .
) R, Total pressure ratio
- i S Airfoil surface pressure coefficient, (Eg;.)
., 2
= s Blade spacing, in.
\ T Total tempeiature, °R
' t Blade thickness, in.
t/c  Blade thickness chord ratio
_" : U Rotor tangential velocity, ft/sec :
" n v Velocity, ft/sec (See Figure 2.)
@ W, Compressor airflow, b, /sec !
i‘”\ ¢ Streamline angle, degrees (See Figure 2.) *
e B Airfiow angle, degrees (See Figure 2.)
B 1, v4 Ratio of specific heats
. q , >° Blade chord angle, degrees (See Figure 3.) | .

‘ o Al Range angle, degrees (See Figure 20.)

Y] Turning angle, degrees (AﬁR = ﬁi - p‘z, Aps = Bg - ‘33)

| : 8 Ratio of stage inlet total pressure to standard sza level pressure
Cet of 14,7 psia
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neg

pos

ST

Deviation angle, degrees (See Figure 3.) . . *
Circumferential rake setting angle, degrees

Efficiency

Ratio of stage inlet total temperature to standard sea level temperature
of 518.6°R

Blade metal angle, degrees (See Figure 3.)

Static or stream density, lb,,/ £

Blade row solidity, (c/s)

Wall shear stress, lbf/ft2

Camber angle, degrees (See Figure 3.)

Local total pressure loss coefficient (See Equation A6.)

Blade element total pressure loss coefficient (See Equation A7.)

Adiabatic

Free stream

Hub

Mass flow averaged
Minimum

Negative

j

. !

Positive i
i

§

Rotor
Stator
Stage

Tip




Axial direction
Tangential direction
z  Tangential-axial plane
Guide vane inlet
Rotor inlet or guide vane exit
Stator inlet or rotor exit
Stator exit .

3 e e A ks I O AT cabwatne Y

W= ODON

Superscripts
' Relative to rotor

DESIGN

The test rig used in this program was designred to test stators with hub
loading levels of 0.65 and 0.75 Djy.

A row of inlet guide vanes and a flow generating rotor were designed
within the current state of the art to provide the selected inlet conditions to
the stators. The flow path dimensions are shown in Figure 1. The design

Rl . eeal s e

| values of the flow generating rotor were:
] WaoJ0 /8 = 88.2 lb/se z.
& aJ_ / /sec 4:
1 Re, R = 1.37 :
Mad, R = 88.8% ;
NIJO = 8367 rpm (1095 ft/sec tip speed) g‘

Ry /Ry (rotor inlet) = 0.683

D, rotor tip = 0,414

The design of the inlet guide vane and rotor is reported in Reference 2.

The stator inlet hub Mach number was 0, 75 at an inlet flow angle of

S 54 degrees and the stator inlet hub-to-tip radius ratio was 0.696. The stator

— . blade airfoil section selected was a 65-series thickness distribution with g

I circular arc mean-line shape, Stators were designed at hub loading levels .
et of both 0.65 and 0. 75 Dy,

Nomenclature used for velocity diagrams and blade description is
shown in Figures 2 and 3, The rotor design velo:ity diagrauis are shown
B in Figure 4. The design velocity diagrams for the 0.65 D¢ and 0. 75 D,

— stators are shown in Figures 5 and 6. Since the radial component of
velocity is relatively small, values of V are shown in velocity diagrams
in places where V'z. literally, should be ehown,




Stator blade airfoil properties are given in Table I. These properties
were used for both slotted and unslotted configurations. One unslotted and five

¢ 'tted stator configurations were designed. A summary of these configurations
follows:

Slot location
Stator hub Stator blade type No. of (% chord along suction

AP A AR i e B & X R e bl T s

(Df) (bleed-blowing) slots surface)
0.65 Bleed 1 60
0.65 Blowing 1 42
0.75 Bleed 3 25, 41, 61
0.75 Blowing 1 39.25
0.75 Blowing 2 40, 69.5
0.75 Unslotted —— -

Blade sections for these configurations are shown in Figure 7. These
stators were cast with a hollow core and only two basic designs were made, i.e.,
0.65 and 0. 75 Dg. For the blowing slotted configurations, high pressure air
was ingested on the pressure surface at the blade leading edge. This air passed :
through a cored section of the blade and was discharged through a slot or slots ’
on the suction surface. The design of the blowing slotted stators is reported in
more detail in Reference 2, For the bleed slotted configurations, air from the
suction surface of the blade was bled through a slot or slots into the core which
was connected to an external pumping source. The design of the bleed slotted
stators is reported in more detail in Reference 1.

P 2 I

APPARATUS AND PROCEDURES

TEST FACILITY

A general arrangement of the test facility is shown in Figure 8. Air
entered the test compressor after passing through the test facility filter
house, an inlet duct, plenum, and bell mouth, and was exhausted to the at-

mosphere through a diffuser. Provisions existed for maintaining compressor
inlet pressures above or below atmospheric, if necessary.

COMPRESSOR TEST RIG

The mechanical arrangement of the compressor test rig was similar for
all testing. The only differences were the stator configuration incorporated
in the rig and, in the case of the slotted bleed stator tests, a connection to a
vacuum source to remove the bleed air. A typical layout of the compressor
test rig for a slotted bleed stator test is shown in Figure 9. Provision was
also made in the rig for bleeding the wall boundary layers at stator tip and
hub, This was accomplished by fabricating the stator flow passage walls




[

from 0. 010 in. thick perforated sheet metal, Manifolds behind the perforated
metal surfaces were connected by multiple tubes to separate vacuum headers for
tip and hub wall bleeds. A pressure drop was maintained across the porous wall
during all testing to ensure the structural integrity of the perforated metal,

S T AP

INSTRUMENTATION

Instrumentation was provided to obtain blade element performance for
the stator and stage overall performance. Figure 1 defines the axial loca-
tion of the various instrumentation planes. The following is a summary of
the instrumentation™® used in each plane;

vt » b iy
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® Inlet plenum
@ 6 single-element total pressure probes
® 2 six-element radial total temperature rakes
® 2 outer wall static pressure taps
@ Rotor inlet (Station 1)
@ 3 radial traverse combination total pressure and yaw angle probes
® 1 radial traverse wedge static pressure probe
® 4 outer wall static pressure taps
® 4 inner wall static pressure taps
@ Stator inlet (Station 2)
® 3 radial traverse combination total pressure, total temperature, and
yaw angle probes
® 2 radial traverse wedge static pressure probes
® 4 outer wall static pressure taps 1
@ 4 inner wall static pressuyre taps
o 2 fixed hot wire annemometers
® 1 radial traverse hot wire annemometer
@ Stator exit (Station 3)
¢ 1 radial traverse 16-element circumferential total pressure rake
¢ 1 radial traverse combination total pressure, total temperature, and g
yaw angle probe
e 2 radial traverse wedge static pressure probes
® 4 five-element radial total temperature rakes
e 1 outer wall five-element total pressure boundary layer rake
@ 1 inner wall five~-element total pressure boundary layer rake
[ J
[

RSP R SRR
v

4 outer wall static pressure taps
4 inner wall static pressure taps

OVERALL AND BLADE ELEMENT PERFORMANCE DATA

Overall and blade element performance data were obtained at five points N
per speed line to define rotor or stage performance between choke and stall.
The stage stall point was defined as the onset of a steady stall cell indication
on the hot wire anemometers. One of the five points on each speed line was
a near-stall setting which permitted a full data point recording. At each full
data point, fixed and traverse pressure and temperature data were recorded
‘at five radial locations at the stator inlet and exit measurement planes.

*This instrumentation is discussed in Reference 3.
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DATA EDITING

Review of the data obtained during the stator testing indicated that an
error exists in the information presented in References 3, 4, 5, 6, 7, and
8. The circumferential rake at stator discharge was designed to survey a
passage between adjacent blades with the leading edge of the rake perpendic-
ular to the compressor axis. Preliminary test results indicated that the
air angle at stator exit was considerably different from the design intent.

A decision was made to rotate the wake probe to provide better alignment

of the probe with the stator exit air angle. The rake angle used in each

test is shown in Table II. Unfortunately, the fact that the probe had been re-
set was not accounted for in the reduction of data. This resulted in an error
in the mass averaging of the data circumferentially. Also, for a large part
of the testing the yaw probe at stator exit was in the blade wake, making its
angle reading of doubtful accuracy. These inequities in the data resulted in
a complete reevaluation of all data obtained. The following data editing
criteria were used to establish the validity of the data.

1, Air angle at stator exit measured by the yaw probe was not used when
the yaw probe was in the stator wake. This condition was determined
by identifying the yaw probe with a circumferential rake element in the
same relative circumferential location. The wake was defined as an
area of steep total pressure gradient as measured by the circumfer-
ential rake.

2, Total pressure at the stator exit measured by the circumferential rake
was not used when the element of the rake corresponding to the same
relative circumferential position as the yaw probe differed in reading by
more than 0.5 in. Hg from the yaw probe reading.

At the 50% streamline station about one-half of the data met the first
criterion and about three-fourths of the data met the second criterion. At
the 30 and 70% streamline stations about one-tenth of the data met both cri-
teria. At the 10 and 90% streamline stations about one-geventh of the data
met both criteria. The results of the data editing led to the decision to pre-
sent only the blade element data obtained at the 50% streamline station., The
data at the 50% streamline station which satisfied both criteria are given in
Table III. The effect of exit air angle on the calculation of @ is minimal,
Therefore, additional data at the 50% streamline station which met only the
second criterion are included in the w vs incidence plots to provide a more
complete picture of the stator loss characteristics.

DATA REDUCTION

Data reduction was performed by two separate computer programs. The
first program was used to calculate overall stage performance, stator




blade element performance and wall bleed flow rate. Calculations were carried
out for the five streamlines which passed through the 10, 30, 50, 70, and 90%
span stations at the stator inlet measurement plane, The second program was
used to determine the stator blade static pressure distribution and calculate

the blade boundary layer control blowing and bleed flow rates. Calculations
were performed at the 10, 50, and 90% span station which corresponded to

the locations of the blade static pressure instrumentation. A summary of the
equations used in these two programs is given in the Appendix,

In many cases, redundant data were obtained. When redundant informa-
tion was available for a particular quantity, the consequences of selecting
the various options were investigated and a judgment was made as to the
best option. The following is a list of sources of data used in the data re~
duction programs to calculate velocity triangles:

® Stator inlet (Station 2)

e Static pressure (p,) vs radius—The four static pressure readings
were arithmetically averaged at the outer and inner walls; static
pressure was obtained as a linear interpolation from these average
wall static pressures. Since wall curvature and convergence were
small, linear interpolation was a good approximation. Reference
3 presents a discussion of the merits of this procedure in compari-
son with the use of readings from the radial traverse wedge static
pressure probes.

® Total pressure (P,), total temperature (T5), and yaw angle (85)
vs radius—An arithmetic average of the readings from th?fﬁ"e%
radial traverse combination probes was used.

® Stator exit (Station 3)

® Static pressure (p,) vs radius—The four static pressure readings
were arithmetically averaged at the outer and inner walls, and
static pressure was obtained as a linear interpolation from these
average wall static pressures.

® Total pressure (P3 ;) vs radius—The radial traverse 16-element
circumferential total pressure rake data were used to obtain total
pressure at each radial location., The rake data were mass flow
averaged across one blade gap according to Equation (A8) in the
Appendix.

e Total temperature (T3) vs8 radius—The readings from the four
five-element radial total temperature rakes were arithmetically
averaged at each of the five radial locations.

¢ Yaw angle (E ) vs radius—The radial traverse combination probe
was used to obtain yaw angle.

Stator Blade Element Performance

Synthesis of the velocity triangles at stator inlet and exit provided the
required information to calculate diffusion factor, deviation angle, and
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incidence angle according to Equations (A3), (A4), and (A5) of the Appendix.
Blade element total pressure loss coefficient was calculated by Equation
(A7) of the Appendix. The numerator of Equation (A7) is one minus stator
total pressure recovery. The choice was made to define recovery as mass
flow averaged total pressure at stator exit—Equation (A8)—divided by the
maximum total pressure as read by the 16-element circumferential rake,
P3,fs. Usir , P3, fg in preference to an arithmetic average of the three
radial trave '‘se combination probes at stator inlet, P,, is a difference which
exists in the stator blade element data presented in this report and the data
previously presented in References 3, 4, 5, 6, 7, and 8.

Total Pressure Loss Coefficient Contour Plots

Stator lacal total pressure loss coefficient for contour plots was ob-
tained using ruguation (A6) of the Appendix. The quantity P3 is a function of
both radius and tangential location. It was obtained from the radial traverse
16-element circumferential rake and was divided by Py, the average of the
three radial traverse combination probes at stator inlet. A preference was

made for Py ratter than P3 g in these presentations of data to give a more
accurate evaluation of the end-wall effects.

Sgge Overall Performance

The quantities required to define stage overall performance were obtained
by use of the following procedures.

@ Stage exit total pressure (P3 m5)—Circumferentially mass flow averaged
total pressure at stator exit (P3 ma V8 radius) was mass flow averaged
radially to obtain the required average stage exit total pressure.

@ Stage exit total temperature (T3, mg)—The arithmetically averaged total
temperature rake data at stator ‘exit (T3 vs radius) was mass flow aver-
aged radially to obtain the required average stage exit total tempera-
ture.

@ Stage inlet total pressure (P;)—The six single-element total pressure
probes in the inlet plenum were at varying radial depths. The total
pressure was assumed to be uniform circumferentially, and stage inlet
total pressure was obtained by radially mass flow averaging the total
pressure as measured by these six probes.

@ Stage inlet total temperature (Tj)—Inlet plenum total temperature was
averaged for the two rakes at each of the six radial locations, and stage
inlet total temperature was obtained by radially mass flow averaging
the inlet plenum total temperature.

The stage inlet airflow was measured with an ASME orifice located in
each branch of the triple inlet header upstream of the inlet plenum. Weight
flow was corrected to stage inlet conditions according to Equation (Al), and
stage efficiency was calculated according to Equation (A2) of the Appendix.
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DISCUSSION OF RESULTS

The following discussion is divided into categories of overall stage per-
formance, stator blade element performance, and evaluation of stator blade
boundary layer control methods. Stator end-wall bleed was in effect for all
data being discussed. Selection of optimum stator hub and tip end-wall
bleed rates was accomplished ir an early phase of the test program, Data
from this phase of testing are presented in the discussion of overall stage per-
formance and demonstrates the effect of three stator end-wall bleed flow
rate: on performance. Al) data discussed under stator blade element per-
formance were obtained with optimum stator end-wall bleed flow rate. In
this portion of the discussion, stator blade element data at the 50% stream-
line location for the six stator blade configurations are compared to deter-
mine relative performance merits. The unslotted 0. 75 D¢ stator is used as
a performance base line for the 0. 75 Dy slotted stator comparisons, The final
portion of the discussion, evaluation of stator blade boundary layer control
methods, is a brief evaluation of the design of the stator blade bleed and blow-
ing configurations using current boundary layer prediction methods.

OVERALL STAGE PERFORMANCE

Ficures 10 and 11 show the overall stage performance for the unslotted
0. 75 hub diffusion factor stator at three stator end-wall bleed flow rates.
Performance of this configuration is considered representative of all configura-
tions tested. The optimization of wall bleed (Reference 3) was performed only
on this configuration and only at design speed.

Overall stage performance at design speed for this configuration and for

the three stator end-wall bleed rates compares with the design performance
as follows:

Stage Optimum Mean Min
desiﬂ wall bleed wall bleed wall bletﬁ

WaJO-/8 at design

Re, ST —1lb,,/sec 88.2 93.6 94.0 03.1
a0 /2 1.35  1.39 1.40 1.38

Wad, ST at design v

Rc. st—% 85.5 6.8 85.8 84.7
Tip bleed as % of

W, inlet - 2.00 1.44 0,87
Hub bleed as % of

W, inlet - 2.45 2.09 1.18
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Within instrumentation accuracy, there was no significant trend of stage
inlet corrected airflow with bleed rate. However, meas'ired stage inlet
corrected airflow was approximately 6% higher than the design value. The
unexpected high flow was a consequence of actual rotor blade deviation angle
being less than design values and actual rotor minimum loss incidence angle
being more negative than design values, Peak stage efficiency at design
speed occurred near design pressure ratio. Stator end wall bleed improved
stage overall efficiency by about 2%, This gain was a result of bleeding the hub
end wall; the tip end wall did not respond to bleed.

)

Figures 12, 13, and 14 are contour plots of stiator local total pressure
loss coefficient at design speed with minimum, mean, and optimum stator
end-wall bleed. It is evident from these loss coefficient contour plots that
the increase in overall stage efficiency was almost entirely the result of hub
wall bleed. Stator loss coefficients in the outer one third of annulus were es-
sentially unresponsive to bleed flow rate over the range of values investigated.
Because the method of bleed at the hub and tip wall was the same, the different
character of response to bleed is attributed to flow conditions near the stator
tip being dissimilar to flow conditions near the stator hub.

STATOR BLADE ELEMENT PERFORMANCE

The stator blade element performance results in the following discussion
are those obtained at ithe 50% streamline position and were obtained with opti-
mum stator end-wall bleed. Corrected airflow was modulated at a given cor-
rected speed to produce a range of stator incidence angle. Data were re-
corded over a range of incidence angle at 60, 80, 90, 100 and 110% of design
speed. Stator blade element inlet Mach number was relatively constant at a
given corrected speed over the range of flows for which data were recorded.
The range of stator blade inlet Mach number for the 50% streamline for all
data recorded at a given corrected speed is as follows:

Corrected speed (% of design) M, at 50% streamline
60 0.40 - 0.44 ;
80 0.54 - 0.59 '
90 0.59 - 0.66
100 0.64 - 0.75
110 0.71 - 0.79

Stator blade element performance is presented in figures as the varia-
tion of loss coefficient, deviation angle, and diffusion factor with incidence
angle and as the variation of loss parameter with diffusion factor. Lines
have been drawn through the data at design speed in these figures to high-
light data trends. Because the data from the various configurations generally
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show a consistent irend with corrected speed, the discussion of results will
refer to data at design speed unless otherwise specified. In the figures
which present loss paramecter as a function factor, a line is provided which
represents two-dimensional cascade data {Figure 149 of Reference 9),

Design point values of incidence angle, loss coefficient, loss parameter,
deviation angle, and diffusion factor are denoted in the figures which pre-
sent stator blade element performance. In comparing data with these de-
sign point quantiiies, it may be helpful to review briefly the background
for selection of these design point quantities. Design point incidence was
selected to provide flow stagnation at the leading edge. This selection was con-
sidered to be a desirable condition for the bleed and blowing configura-
tions and not necessarily optimum for the unslotted configuration, The values
of design point loss coefficient and loss parameter were selected to provide
a target level of loss which was between one-half and two-thirds of that pre-
dicted for unslotted stator blade elements. The design point diffusion factor
at the 50% streamline was somewhat lower than at the hub as a consequence of
the radial variation in velocity diagrams and stator blade solidity. Design
point deviation represented an estimate of stator blade element deviation with
boundary layer control. Additional detail on considerations relative to selec=
tion of these design point quantities may be obtained from the design reports
(References 1 and 2).

The stators in the following discussion are identified by their design hub
diffusion factor, number of slots, and +'pe of boundary layer control (suc-
tion surface bleed or blowing). A summary of the six stator configurations,
including slot location, and design slot flow is as follows:

Slot location
Stator loading No. of slois (% chord along Design slot flow

(D at hub) (type) suction surface) (% stage inlet flow)
0.75 Unslotted ~—- el
0.75 3—bleed 1—25.0 1.50
2—41.0
3—61.0
0.75 1—blowing 39.25 1,34
0.75 2—Dblowing 1-=40.0 1.92
2—69.5
0.65 1—bleed 60.0 1.80
0.65 1—Dblowing 42,0 1.08

There was no provision for measurement of slot flow during testing of

the three blowing stator configurations. Slot flow was measured during testing
of the two bleed stator conf.gurations.
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During testing of the 0.75 Dy triple-siotted blead stator, three levels of
suction surface boundary layer bfleed rates were ap;:lied to the stator. These
were classified as the optimum bleed rate, mean hleed rate, and zero bleed
rate. The optimum bleed rate is defined .s that which analytically removes
one-third of the local boundary layer at each slot location \Reference 1). Op-
timum and mean bleed rates expressed as a percent of stage inlet flow are
shown in Figures 15 and 16 as a function of stage pressure ratio and percent
of design corrected speed. In the discussion of results for the 0.75 Dy triple-

slotted hleed stator, bleed rate used was the optimum rate unless otherwise
specified.

During testing of the 0. 65 D, single~-slotted bleed stator, three levels of
suction surface boundary layer b fleed rates were applied to the stator. These
were classified as optimum bleed rate, 2/3 optimum bleed rate, and 1/3
optimum bleed rate, Optimum, 2/3 optimum, and 1/3 optimv bleed rates
expressed as a percent of stage inlet flow are shown in Figures 17, 18, and

19 as a function of stage pressure ratio and percent of design corrected speed.

In the discussion of results for the 0.65 D; single-slotted stator, bleed rate
used was the optimum rate unless otherwise specified.

Quantities which are used in the following discussion to assess the rela-
tive merits of the various stator configurations are illustrated in Figure 20.
They are defined as follows:

®3, min—minimum value of @3 at a given corrected speed
i3, min—Vvalue of iy at which &3 iy Occurs

Df3, mm—value of D¢, at 19, min

-] o .
83. min—Vvalue of §; at iy, min
ig, neg—value of ig less than 5.2‘ min 8t which 263 = 63. min * 0.03
12, pos—value of iy greater than iy i, at which &; = &3 iy +0.05

Dfa, po —value of Df3 at i3 pos

Ai,~-quantity (12, pos " iy neg)

The quantities ip, neg and i pog are chosen to indicate the onset of high
loss coefficients at incidences more ne gative and more positive than i2, min,
respectively. The definition of ip, neg and i3 p5og i8 arbitrary and is in-
tended to represent approxxmately the useful 1f its of operation of the stator

blade element. The quantity Ai, is referred to as range in the following
discussion.
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83, min,
, and Aiy, have been listed in Table IV for design speed

Values of the eight quantities, ®3 mins 12, mins Dg
' : 3, min’

12, neg’ 12, pOS‘ Df3‘ pos

blade element performance of the six stator configurations. In some cases,
definition of values for Table IV has required extrapolation of data. Where
extrapolations have been required, an asterisk has been placed adjacent to
the value. Values in Table IV which have been left blank were judged to re-
quire excessive extrapolation.

Comparison of Slotted vs Unslotted Stators

The 0. 75 D¢ unslotted stator will be used as a base line for comparing
the three 0, 75 Dy slotted stators in the following paragraphs,

0.75 Dy Triple-Slotted Bleed Stator vs 0.75 D, Unslotted Stator

The performance of these two configurations is shown in Figures 21a and
21b. Performance at design speed may be compared as follows:

~

Configuration (3&23‘" %, min M3, min 8(3eg';un ®legk 112(aeogs) Dfs pos ‘(:*ez‘)
0.75 D; unslotted -5.0 0. 042 0. 64 13.0 -14. 4% 1.5 0. 71 15.9
0. 175 Dy triple-slotted

bleed (optimum) -0.5 0.014 0.70 10.0 -13. 5% 7.0 0.177 20.5
Design -3.0 0.042  0.70 18.0

*These values have been extrapolated from the data in Figure 21a,

This comparison shows that the triple-slotted stator had a lower
minimum loss coefficient, a lower deviation angle, higher Dy at minimum
loss incidence, and larger range than the unsloited stator. Increased
range was achieved principally by increased ability to operate at more
positive incidence (increased ig, os): Compared to design values, the
triple-slotted bleed atator achieved design loading at about “2\@ degrees
more positive incidence angle and was accompanied by a lower-than-design
loss coefficient, Deviation angle was less than the design value by about 8
degrees.

Figure 21b illustrates that the triple-slotted stator had generally lower
loss parameter and higher diffusion factor than the unslotted stator. Loss
parameter of the trip'e-slotted bleed stator at 19, min Was approximately
one-half of the reference value for two-dimensional cascades.

The comparisons of Figure 2la and 21b indicate that the 0. 75 Dy triple-
slotted bleed stator was far superior to the 0.75 Dy unslotted stator.
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0.75 D, Triple-Slotted Bleed Stator With Zero Bleed vs 0.75 Dy
Unslottfed Stator

B The 0.75 Dy triple-slotted bleed stator was evaluated for blade element A
' performance at three suction surface boundary layer bleed rates. One of '

these was zero bleed rate. Blade element performance at zero bleed rate

for the 0, 75 D¢ triple-slotted bleed stator provides an interesting com-

parison with the 0,75 D¢ unslotted stator. Unfortunately, yaw probe data at the

stator exit were generally in error for the zero bleed rate investigation and

data were obtained only at design corrected speed, With these limitations,

the comparison is made on the basis of loss coefficient versus incidence

- | angle only and is shown in Figure 22. A summary of the comparison shown

- in Figure 22 follows:

‘2, min ig neg ) J)oa Mg
Configuration (deg) &3 min (deg) ( eg) (deg)
0.75 Df unslotied -5.0 0.042 -14.4% 1.5 15.9
W 0. 75 Dy triple-slotted
L bleed (zero) 1.0 0.0901 -9.1 5.8 14.4

*These values have been extrapolated from the data in Figure 22.

This summary shows that minimum loss coefficient of the triple-slotted
stator at zero bleed was about twice as high as for the unslotted stator. Range

of the two configurations was about the same. Values of i3, min, i2, neg:
and i3, pog for the triple-slotted stator at zero bleed occurred at about five

degrees more positive incidence angle compared with corresponding values
for the unslotted stator. P

The comparison in Figure 22 shows that the 0. 75 D¢ triple-slotted bleed
stator operating with zero net suction surface boundary layer bleed had
about twice the loss of the 0,75 Dy unslotted stator. This comparison sug-
gests that substantial detrimental recirculation existed into and out of the

slots of the 0.75 Dy tripie-slotted bleed stator when operated with zero net
bleed.

0. 75 D¢ Single-Slotted Blowing Stator vs 0.75 Dy Unslotted Stator

Performance of these two configurations is shown in Figures 23a and
23b. There is insufficient data to define i3 ,,g and, therefore, Aig of the
blowing stator. With these exceptions, the two configurations may be com-
pared at design corrected speed from Figure 23a as follows:




. . o
’ Configuration l%dez;m & min Df-_,‘ min 6?&1&3‘“ i?de'g‘f‘
0.75 D¢ unslotted -5.0 0. 042 0.64 13,0 <14,.4»
0.175 Dy single-slotted
blowing 2,0 0.078 c-- ~—- -5.6
Design -3.0 0.042 0.70 18.0

*These values have been extrapolated from the data in Figure 23a,

ke vlJAiﬂ_v.‘Q}M‘_.&ﬁm}-’.mi&:\-.‘nl B et "‘lﬁai

This comparison shows that the single-slotted blowing stator had a higher
minimum loss coefficient and a more positive i3, neg than the unslotted stator.
Figure 23a shows that the single-slotted blowing stator exhibited a trend of
decreasing deviation with increased incidence unlike the unslotted stator and
achieved a somewhat lower loss coefficient at incidences greater thar. about
‘ one degree. Figure 23b also indicates that the single-slotted blowing stator had
’ generally higher loss than the unslotted stator.

The comparison given in Figures 23a and 23b indicates that the 0,75 Ds
single-slotted blowing stator was generally inferior to the 0.75 Dy unslotted
stator. Note also, that minimum loss occurs at a much higher incidence with :
the single-slotted stator. The poorer performance of th2 single -slotted blowing ' -.
stator at negative incidence angle may be an indication of a problem with flow
in the region of tLe blade leading edge associated with the source of the blowing
stream also located in the region of the blade leading edge.
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0.75 Dy Double-Slotted Blowing Stator vs 0. 75 Dy Unslotted Stator

Figures 24a and 24b show the performance of these two configurations.
A comparison of the two configurations at design corrected speed from Figure
24a follows:

= e R T N T

o
o Configuration 12(¢'ie‘?)m % min Dfa‘ min 8'(:?:l'e:)l n i%ae'ﬁ‘ i2(' epg‘;s ng’ ' pos (‘1:028)
0.75 Dy unslotted -5.0 0. 042 0.64 13,0 -14.4* 1,5 0.71* 15.98
C 0.75 Dy double-slotted .
“ blowing 1.2 0. 052 0.70 16,6 -6.8 4.9 0. 74% 11.17 .
" Design -3.0 0.042 0.70 18,0
- mes have been extrapolated from the data in Figure 24a, . '
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This comparison shows that the double-slotted blowing stator had on the

order of 25% higher minimum loss coefficient, achieved higher loading at
minimum loss incidence angle, and had about 4 degrees lower range than
the unslotted stator. Qualitatively similar to the previous comparison,

the blowing stator in this comparison exhibited poorer performance at more

negative incidence angles and a shift in the minimum loss point to a positive
incidence compared with the unslotted stator., The markedly poorer perform-
ance of the double-slotted blowing stator at more negative incidence accounted

for its reduced range compared with the unslotted stator. Figure 24b also shows
gi%%tle%ss of the double-slotted blowing siaior was somewhat higher than the un-

stator,

The comparison of Figures 24a and 24b indicate that the 0.75 D¢ double-

slotted blowing stator was generally somewhat inferior to the 0.75 D; unslotted

stator. As in the previous comparison, the unslotted blowing stator

exhibited poorer characteristics at more negative incidence angles and a shift in
the minimum loss point toward more positive incidence as compared with the un-
slotted stator, The recurrence of this characteristic confirms the indication of a

leading edge flow problem for blowing stators of this type.

Cross-Comparison of Various Slotted Stator Configurations

The following paragraphs present comparisons of stator blade element
performance on the basis of the effects of the number of slots, the effects of
suction surface boundary layer bleed rate, the effects of bleed vs blowing
slots, and the effect of loading level.

0.75 Df Single-Slotted Blowing Stator vs 0.75 Df Double-Slotted
Blowing Stator

The performance of these two configurations is shown in Figures 25a and
25b. There is insufficient data to define i2, pos and range for the single-
slotted blowing stator. With these exceptions, the two configurations may be
compared at design corrected speed from Figure 25a as follows:

' 12, min ¥3, min 12, neg
Configuration (deg) ®3, min Dfs‘ min (deg) (deg)
0. 75 D¢ single-slotted A

blowing 2.0 0.078 ——- -=— -5.8
0.75 Dy double-slotted
blowing 1.2 0.052 0.70 15,5 -6.8
Design -3.0 0.042 0.70 18 0
19
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Both configurations had approximately the same value of iy mip,
i2, neg, and 8§° min. The primary difference between the configurations was
that the single-slotted stator had about 50% higher minimum loss coeffi-
cient than the double-slotted stator. The generally higher loss of the single~
slotted stator is shown by data presented in Figures 25a and 25b.

The comparison given in Figures 25a and 25b indicates that the 0.75
D; double-slotted blowing stator was superior to the 0. 75 Dy single-slotted
b{owing stator. The slot arrangement of these two configurations is shown
in Figure 7. Both stator blades had a slot located at approximately 40% of
chord. The double-slotted blades had an added slot located at about 70% of
chord. The performance comparison given by Figures 25a and 25b suggests

that the added slot located at 70% of chord improved blade element perform-
ance. '

Effect of Bleed Rate for 0,65 D¢ Single-Slotted Stator

The blade element performance of this configuration aa affected by
suction surface boundary layer bleed rate is shown in Figures 26a and 26b,

A summary at design corrected speed of the comparison shown in Figure 26a
follows:

i2, min _ "3, min ‘2, neg iz, pos Aly
Bleed rate (deg) “3, min ng‘ min (deg) (deg). (deg) ng‘ pos (deg)
Optimum 3.0 0.007 0,58 8.0 -3.6 B, 0% 0.68% 12.6
2/3 optimum 2.7 0.014 - 0,54 ——- -8.2% 8. 8* 0,63%* 15.0
1/3 optimum 2.0 0.010 0,62 8, 0" -2, 8% 8.4% 0,63 11.2
Design 3.0 0. 040 0. 60 16.9

*These values have been extrapolated trom data in Figure 26a.

This summary does not indicate any strong or consistent trends of
stator blade element performance with variation in suction surface boundary
layer bleed rate over the range tested. The losses are low compared to design
and variations with bleed flow rate are within data accuracy. Figure 26b does not
illustrate any significant trend of loss parameter with bleed flow rate. '
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Figures 26a and 26b indicate that the performance of the 0.65 Dy single-
slotted bleed stator was relatively independent of suction surface boundary
layer bleed rate over the range of bleed rates tested.

gt :tirl')f Single-Slotted Blowing Stator vs 0. 65 Dy Single-Slotted Bleed

No unslotted 0. 65 Dy stator was evaluated. The only comparison avail-
ab.e at 0, 65 Dy is between a bleed and a blowing stator. This comparison
is shown in Figures 27a and 27b. A summary at design corrected speed of
the comparison given by Figure 27a follows:

i in 33, min 12, neg 12, pos Alp
Configuration fed %3 min Pf3, min _ (deg) (deg)  (deg)  Df3 ooa (deg)
0.685 Dy single~-slotted
blowing 3.7 0. 042 0.47 16.5 o* 8,0 0.682 8.0
0.65 Dy single-slotted
bleed (optimum) 3.0 0, 007 0.58 8.9 -3.6 9. 0% 0.68* 12. 6

Design 3.0 0. 040 0.60 10,0

*These values have been extrapolated from the data in Figure 27a.

This summary indicates that the 0. 65 D; single-slotted bleed stator
had lower minimum loss coefficient, a more negative i3 neg) 2 larger range,
higher loading at minimum loss incidence angle, and lower deviation angle
than the 0.65 Dy single-slotted blowing stator. The 0.65 D¢ single-slotted
bleed stator blade element performance compared closely with design values
of incidence angle, diffusion factor, and deviation angle. Minimum loss co-
efficient of the bleed stator was in the order of one-sixth of the design loss
coefficient. Data presented in Figures 27a and 27b show that the 0, 85 D¢ single-
slotted bleed stator had much lower loss than the 0. 65 D¢ single-slotted blow-
ing stator. Minimum loss parameter of the 0.65 D single-slotted bleed stator
was lower than the reference line for two~-dimensional cascades.

The comparison given in Figures 27a and 27b indicates that the 0.65 D
single-slotted bleed stator was superior in performance to the 0.65 D¢ single-~
slotted blowing stator.

Effect of Bleed Rate for 0.75 D, Triple-Slotted Bleed Stator

The blade element performance of this configuration as affected by suc-

tion surface boundary layer bleed rate is shown in Figure 28a and 28b, A
summary at design corrected speed of the comparison shown in Figure 28a
follows:
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~ show the performance of these two configurations. The two configurations

i2, min ¥, min 12, neg 12, pos Alp :
Bleed rate Weg) B3 min  Dfy min (e (deg) @eg)  Dry 4 (deg) 1
Optimum 0.5 0.014 0.70 10,0 -13,8* 7,0 0.77 20.5
Mean -1.4 0.026 0.68 11.0% -13.6% 6.3 0.76 19.9 ?
Zero 1.0 0.081 --- . -9, 1 5.3 - 14.4 2
Design -3.0 0. 042 0.70 18,0 :

*These values have been extrapolated from the data in Figure 28a.

This summary indicates that optimum bleed rate resulted in about one
half the minimum loss coefficient as compared with the mean bleed rate.
Minimum loss coefficient at both optimum and mean bleed rate was well below
the design loss coefficient. Comparison of optimum with mean bleed rate
for other blade element performance quantities in this summary indicates
no significant trend within the accuracy of the data. Blade element perfor-
mance at zero bleed rate was greatly deteriorated. Minimum loss coeffi-
cient was about twice the design loss coefficient and the range was about six
degrees lower than the range obtained with optimum bleed rate. The data
at 80% of design corrected speed in Figure 28b alsc shows that the loss
coefficient of this stator configuration was lower when optimum suction sur-
face bleed rate was applied as compared to mean bleed rate,

Figures 28a and 28b indicate that best blade element performance of the
0.75 Dy triple-slotted bleed stator was obtained at optimum bleed rate. A
mild deterioration of performance resulted when bleed flow rate was reduced
from the optimum level to the mean level, and a large deterioration of per-
formance resulted when bleed flow rate was further reduced from the mean e
level to zero. In fact, at zero bleed, losses were higher than for the unslotted ‘
blade, .

0. 75 Dy Double-Slotted Blowing Stator vs 0. 75 Dy Triple-Slotted Bleed

e mea e D e

Stator i
The better of the two 0.75 Dy slotted blowing stators has been chosen to ‘

compare with the 0.75 Dy triple-slotted bleed stator. Figures 29 and 29b

may be compared at design corrected speed from Figure 29a as follows:

- i2, min _. %3, min i2, n i3, pos Alg
Configuration (deg) %3, min Df3. min (dég) (deg! ¢ (aep Df;g, pos (deg)
0. 75 D; double=-slotted
blowing 1.2 0.052 0.70 15,5 -6.8 4.9 0. T4* 11.7 .
0.7% Dé triple-slotted
bleed {optimum) -0.5 0.014 0.70 . 10,0 -13,5* 7.0 0.7 20.8
Design -3.0 0. 042 0.70 18.0

*These values h, ve been extrapolated from the data in Figure 29a.
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The 0.75 Dy triple-slotted bleed stator had performance equal to or
better than the performance of the 0.75 D¢ double-slotted blowing stator for
all quantities compared from Figure 29a. Particularly outstanding quantities
to compare are loss coefficient and range, Data presented in Figure 29a and

29b indicate that the 0, 75 Dy triple-slotted bleed stator had a much lower loss
than the 0. 75 Dy double-slotted blowing stator.

The comparison presented in Figures 29a and 29b indicates that the 0,75
Dy triple-slotted bleed stator was superior in performance to the 0. 75 Dy
double-slotted blowing stator.

Effect of Loading—0,65 D Single-Slotted Blowing Stator vs 0.75 Df
Sinile-Slotted B%owig Stator

The performance of these two configurations is shown in Figures 30a and
30b. Comparison of the two configurations is made by relating blade element
performance of each configuration to its design performance. A summary of

blade element performance at design corrected speed as shown in Figure 30a
follows:

12 8’3, min 12, neg

Configuration (da'r)nm 3. min D‘B, min («:Ii:g')n1 (deg)
0. 85 D; single-slotted

blowing 3,7 0. 042 0.47 16,5 o®
0.65 Dy design 3.0 0. 040 0.60 10.0
0.75 Df single=-slotted

blowing 2.0 0.078 .- --- -5,8
0.75 D‘ design -3.0 0. 042 0.70 18.0

*These values have been extrapolated from data in Figure 30a.

From this summary, the 0.65 Dy single-slotted blowing stator demon-
strated a minimum loss coefficient and a minimum loss incidence angle equal
to its design loss coefficient and incidence angle within the data accuracy.
Deviation angle at minimum loss incidence angle was much higher than de-
sign deviation angle for the 0.65 Dy stator, and diffusion factor at minimum
loss incidence angle was much lower than design diffusion factor., The 0. 75
Dy single-slotted blowing stator had a minimum loss coefficient approximately
twice as high as its design loss coefficient. Deviation angle at minimum
loss incidence angle was less than design deviation angle for this 0. 75 D,
stator. There are insufficient data presented in Figure 30a to define i2, pos
and to compare range. Data presented in Figure 30b indicate that the 0. 65 D
single-slotted blowing stator demonstrated a minimum loss parameter about
equal to its design loss parameter, while the 0.75 D¢ single-slotted blowing

stator demounstrated loss parameters much greater than its design loss param-
eter,

. “

o - ~": e L , - w,ﬁr__.d =T @ ‘ I e § L "“-\.,‘ Y = T TEE T ) " D . R

N




A

o

9 ‘,.‘ I "
i ev v}-'-“'WWRWEEMEﬂ-ﬁU’; . TN N s T e s L LITI e P
> . o > o B : . “» ) . . o L B

The comparison presented by Figures 30a and 30b indicates that, rela~
tive to design values, the 0.65 Dy single-slotted blowing stator had generally
better loss characteristics and poorer deviation characteristics than the
0.75 D; single-slotted blowing stator.

EVALUATION OF BLADE BOUNDARY LAYER CONTROL METHODS

The blade element performance data presented in this report indicate
that significant improvements in stator range and loss at a given level of load-
ing can be realized by using an effective means of stator blade boundary layer
control. Of the two methods presented here, bleeding off the momentum de-
ficient air adjacent to the blade surface appears to be a more effective method
of controlling the boundary layer as compared with reenergizing the air by
tangential slot blowing. Although these conclusions appear valid for this
particular situation, a generalization regarding the merits of bleed control
versus blowing control cannot be made until a valid method for optimizing the
slot design and location for maximum effectiveness is available. This will
require a more detailed knowledge of the boundary layer parameters for these
parameters determine the location and characteristics of the boundary layer
control device. These boundary layer parameters, in turn, depend on the
static pressure distribution about the airfoil.

Airfoil static pressure distributions are fiundamental consequences of
air foil shapes and are usually determined either by direct measurement in
cascades or are the result of interpolations and extrapolations of existing
cascade data; this was the case for the stator designs reported here. A de-
tailed explanation in Reference 1 describes how the static pressure distri- 0 e
butions at design incidence about the 0.65 D; and 0. 75 D; stator blades were
estimated. These static pressure distributions presented in the form of
pressure ccefficient versus percent chord are shown in Figures 31 and 32
of this report and will be the basis of the analytic investigation that follows.
These static pressure distributions at the stated loading levels are based on
the premise that some means of boundary layer control exists to prevent sepa-
ration from occurring and also on the agssumption that the presence of a means
of boundary layer control would not affect the distributions themselves.

PR U

The boundary layer analysis originally used in the slot design procedure
was an integral solution as formulated by Truckenbrodt (Reference 10). This
basic momentum integral technique was used in conjunction with a compres-
sible transformation tc predict the streamwise slot location and related
boundary layer parameters. However, in light of the sophistication of current ’
turbulent boundary layer computational techniques, a review and comparison
of the slot location as predicted by the Truckenbrodt method was initiated.
The methods used here to reassess the points of boundary layer separation
are the Mellor-Herring incompressible technique (Reference 11), the Herring
compressible technique (Reference 12), and the McNally compressible tech-
nique (Reference 13),
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The Mellor-Herring incompressible method provides a numerical solu-
tion to the boundary layer equations through the use of the effective viscosity
hypothesis of Mellor (Reference 14). The basic numerical scheme can be
described as an implicit scheme resulting in an ordinary differential equation
at each siation which is solved according to a Runge-Kutta method adapted to
the laminar and turbulent boundary layer equations. The Herring compres-
sible analysis is conceptually similar to tlke incompressible mode. The
coupled equations of mass, momentum, and energy are solved numerically,
again using the effective viscosity concept. The McNally calculation is a so-
lution to the momentum integral and moment of momentum integral equa-
tions, using a compressible boundary layer transformation. This method is
similar in approach to that of Sasman and Cresci (Reference 15). The re-
sults of these three more sophisticated methods are compared to the original
Truckenbrodt calculations for the 10, 50, and 90% annulus height sections
at design conditions as shown in Figures 33 through 35 for the 0.65 D; stator
and Figures 36 through 38 for the 0. 75 Dy stator, The criterion used to de-
termine the separation point for the Mellor -Herring incompressible, Herring
compressible, and McNally compressible methods is defined as that point
where the wall shear stress, r,, and, correspondingly, the skin friction

coefficient, C¢, approach zero. The Truckenbrodt method assumes that
separation occurs when the incompressible shape parameter Hi =2.2,

It can be seen from Figurss 33 through 38 that the current techniques are
in close agreement and indicate separation about 20% chord further
downstream than the original Truckenbrodt prediction. This result implies
that when using the same boundary layer control design procedure at design
incidence as reported in References 1 and 2, slot location should be further
downstream than originally thought. Whether the conservative upstream
location of the single slots could have tripped the boundary layer (particu-
larly in the case of tangential blowing) and caused premature separation
or whether the blowing slot was located too far upstream to be effective at
design conditions can only be speculated. The blade element data do te..d to
support these possibilities. However, better performance should have been
measured at high incidence angles where the upstream location of the slot
would be advantageous. Blade surface static pressure measurements were made
to better define the points of separation. Unfortunately, this information was,
for the most part, rendered useless because of excessive data scatter. This
scatter was primacily a result of locating the 12 suction surface static taps on
four separate blades. Figures 39a and 39b present two experimental 0, 75 Df un-
slotted static pressure distributions, and show the points of separation as pre-
dicted by the four boundary layer analysis methods considered. The three more
sophisticated analysis methods are in close agreement with each other and with
experimental observations, while the Truckenbrodt solution appears too con-
servative. The fact that "he pressure distribution shown in Figure 39b indicates
severe upstream separation is attributed to its close proximity to the end wall
which exhibited a considerable effect on the blade surface flow distributions.
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Based on this study, the following conclusions are drawn.

1, Of the current boundary layer methods studied—Mellor-Herring in-
compressible, McNally compressible, and Herring compressible —
all predicted nearly the same location of suction surface separation
and were in close agreement with experimental observations. This
suggests that the relatively simple Mellor-Herring incompressible
method is adequate for freestream Mach numbezars up to 0. 7.

2. The ability to accurately predict the separation point is highly de-
perdent on possessing a good design or experimental freestream pres-
sure distribution since this distribution supplies most of the informa-
tion for the boundary layer calculation.

3. The use of current methods of predicting boundary layer separation
would increase the chances of successful application of boundary layer
control.

4, The leading edge pressure distribution as well as the zone of transition
from laminar flow to turbulent flow should be investigated in more de-
tail in order to study their effects on separation.

SUMMARY OF RESULTS

Comparison of the performance of the six stator configurations was re-
stricted to the midspan blade element. Stator hub and tip wall bleeds were used
to minimize end wall effects. Comparisons at midspan indicate the following

results,

1. A significant improvement in blade element performance was
achieved with suction surface boundary layer bleed.

® Minimum values of loss coefficient for the 0.75 Dy triple-slotted
bleed stator were about one-third of those for the 0.75 D¢ un-
slotted stator.

® The useful operating range of incidence angile for the 0.75 Df triple-
slotted bleed stator was judged to be about 4 degrees larger than
that of the 0.75 D¢ unslotted stator.

© The 0.75 Dy triple-slotted bleed stator achieved about 10% higher
diffusion factor thronghout its useful operating range as compared
with the 0. 75 Dy unslotted stator.

@® Deviation angle for the 0. 75 Dy triple-slotted bleed stator was about
3 degrees lower than that for the 0. 75 D¢ unslotted stator.

2. Blade element performance with suction surface boundary layer blow-
ing was generally inferior to that of the unslotted stztor.

[T IS Y

%

® Minimum values of loss coefficient for both 0. 75 Df slotted blowing
stators were higher than those of the 0.75 Dy unslotted stator.
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@ The negative incidence limit of useful operating range for the 0. 75
Dy unslotted stator extended approximately 8 degrees further in the
negative incidence direction than that of either 0.75 Dy slotted blow-
ing stators.

® The minimura loss point for both 0. 75 D; slotted blowing stators
was shifted to a much higher incidence angle than that of the 0. 75
D¢ unslotted stator.

Design of the slotted blowing stator configurations may not have
been optimum.

(S

@ At relati.ely negative incidence angle, the inferior performance

of both 0.75 D slotted blowing stators when compared with the
0.75 Dy unslotted stator suggests a problem with design of the
leading edge and/or the hlowing flow intake slot located near the
leading edge.

_— ® The current houndary layer prediction methods ..re in close agree-
ment with experiemental observations. The current methods pre-
dict suction surface boundary layer separation about 20% of chord

further downstream than the method used for design.

AT 4. Over the range of bleed rates tested, the 0.65 Dy single-slotted
wiky bleed stator demonstrated no trend of performance within limits of

N data accuracy. When bleed rate was reduced from the design level
to about one-half of the design level, the 0. 75 D¢ triple-slotted
bleed stator demonstrated a loss in performance but was still
superior to the 0.75 Dyg unslotted stator. At zero bleed ratc the
0.75 Dy triple-slotted bleed stator was inferior tc the 0.75 Dy un-
slotted stator.

; An improvement of about 2% in stage efficiency was achiaved at design

} speed as stator end wall bleed was increased. This gain in perferimance was
the result or bleeding the hub end wall; the tip end wall did not respond to
bleed.

A A e
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APPENDIX

PERFORMANCE EQUATIONS

The following overall and blade element performance parameters were
calculated for the analysis of test data and the evaluation of the slotted and

unslotted stator performance,

WEIGHT FLOW

Overall performance is presented as a function of corrected weight flow
defined as

W40
___e\’_: (Al)

S
£DIABATIC L FFICIENCY

Adiabatic efficiency for the inlet guide vane, rotor, and stator com-
bination is
Y-1
(PB, ma) Y 1
P
0 (A2)

Tg, ma _
Ty

Nad, ST =
1

DIFFUSION FACTOR

The stator diffusion factor is defined as

Vo Vg ,-V
3 V0,2° V9,3
Dp, =1-=—+ ' (A3
f3 V, 2@V )

DEVIATION ANGLE

The stator deviation angle is defined as

8° = p3 - K3 (A4)
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INCIDENCE ANGLE
The stator incidence angle is defined as
b
TOTAL PRESSURE LOSS COEFFICIENT

= ﬁz - Kz (A5)

a) The local total pressvre loss coefficient for the stator is defined as

“3 = (AG)

b} The blade element total pressure loss coefficient for the stator is de-

fined as
1- P3, ma
5, - P3,is
= (A7)
t-[1 "]
MASS AVERAGED TOTAL PRESSURE
Mass averaged total pressure is defined asg
n
) (P3)i (P3V3Ae)i
i=1
P3, ma *© " (A8)
Y (P3V3he);
i=1

where (A )1_1 is the first partial elemental area between adjacent blades

and (A.);-, i8 the last partial elemental area between adjacent blades. The

number of elemental areas between adjacent tiades and their values depends
on rake probe angle e,
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PRESSURE COEFFICIENT

Pressure coefficient (S) is defined as

where

p is ‘*he stator blade surface static pressure
1 2

4y =3 P2V

SKIN FRICTION CQEFFICIENT

The skin friction coefficient is defined as

—w_
1 o2
2PV

-
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Figure 2. Velocity diagram nomenclature.
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Figure 3. Stator aerodynamic and blade geometric nomenclature.
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small, values of V are shown in velocity diagrams in
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(2) Radil at the hub section include an aerodynamic block-
age factor and are not physical dimensions.

6600-4
Figure 4. Velocity diagrams for flow generating rotor.
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Figure 5. Velocity diagrams for 0,65 hub Dy stator,
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Figure 8. Velocity diagrams for 0.75 hub Dy stator.
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b. 0.65 Dy single-slotted blowing
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U. 0255
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e. 0.75 Df double-rlotted blowing
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f. 0.75 Dg triple-slotted bleed
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Figure 7. Typical airfoil secti ns for slotted and unslotted stators,
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Bleed at tip as % of stage inlet airflow— 1.44

njeed at hub as % of stage inlet airflow~ 2.09
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Figure 13. 0.75 D¢ unslotted stator-~contour plot of local total pressure
loss coefficient, (w3)—mean wall bleed.
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Figure 18. 0.65 D; single-slotted stator—bleed rate vs stage

pressure ratio—2/3 optimum bleed rate,
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Table I1.

Stator exit circumferential rake > probe aniles used
for tests of stator blade configurations.

/

Tube axis
1
Tangential direction -/ £ (positive as shown)

!
!
T T

Circumferential rake
(shown in design position)

Center of rotation

Stator configuration Rake setting angle, €
0. 75 D¢ unslotted ¢ —gcand .70

0.75 Ds triple-slotted bleed® -9°

0. 75 Dg single-slotted blowing 3 -1°

0. 75 D¢ double-slotted blowing8 -8°

0, 85 Dy single-slotted bleed’ +19° and +28°
0. 65 D¢ single-slotted blowing? +10°

Design rake angle for 0. 65 and 0.75 D¢ 9° 26

Notes: (1) Superscripts denote references.

(2) The 0.75 Dt unslotted stator was tested twice and at slightly different
rake angles. The 0,65 Dg single-slotted bleed stator also was tested twice.
The initial rake setting angle was at 19°. Based on yaw probe measurements
at Station 3, a 28° rake setting angle was selected for the second test.
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